Jackknife-after-bootstrap regression influence diagnostics
نویسندگان
چکیده
منابع مشابه
Jackknife-After-Bootstrap as Logistic Regression Diagnostic Tool
Jackknife-after-Bootstrap (JaB) has first been proposed by [1] then used by [2] and [3] to detect influential observations in linear regression models. In this study, we propose using JaB to detect influential observations in logistic regression model. Performance of the proposed method will be compared with the traditional method for standardized Pearson residuals, Cook’s distance, change in t...
متن کاملJackknife Approximations to Bootstrap Estimates
Let T be an estimate of the form Tn = T(F ) where F is the nn n' n sample cdf of n iid observations and T is a locally quadratic functional defined on cdf's. Then, the normalized jackknife estimates for bias, skewness, and variance of Tn approximate closely their bootstrap counterparts. Each of these estimates is consistent. Moreover, the jackknife and bootstrap estimates of variance are asympt...
متن کاملInvited Paper Jackknife, Bootstrap and Other Resampling Methods in Regression Analysis'
Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive o...
متن کاملComparison of Bootstrap and Jackknife Variance Estimators in Linear Regression: Second Order Results
In an extension of the work of Liu and Singh (1992), we consider resampling estimates for the variance of the least squares estimator in linear regression models. Second order terms in asymptotic expansions of these estimates are derived. By comparing the second order terms, certain generalised bootstrap schemes are seen to be theoretically better than other resampling techniques under very gen...
متن کاملInfluence Diagnostics in Two-Parameter Ridge Regression
Abstract: Identifying influential observations is an important part of the model building process in linear regression. There are numerous diagnostic measures based on different approaches in linear regression analysis. However, the problem of multicollinearity and influential observations may occur simultaneously. Therefore, we propose new diagnostic measures based on the two parameter ridge e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Nonparametric Statistics
سال: 2010
ISSN: 1048-5252,1029-0311
DOI: 10.1080/10485250903287906